Syntax error Prove the equalities of regular expressions by applying properties?

Prove the equalities of regular expressions by applying properties?



Problem

Prove each of the following equalities of regular expressions.

a. ab*a(a + bb*a)*b = a(b + aa*b)*aa*b.

b. b + ab* + aa*b + aa*ab* = a*(b + ab*).

Solution

Problem 1

Prove that ab*a(a + bb*a)*b = a(b + aa*b)*aa*b.

Let’s take LHS ,
   = ab*a(a + bb*a)*b
Use property of (a+b)* = a*(ba*)*
   = ab*a (a* ((bb*a) a* )* a*b
   = ab* a (a*bb*a)* a*b {Associative property}
   = ab* (a (a*bb*a)*)a*b
   = ab*(aa*bb*)*aa*b
   = a (b*(aa*bb*)*)aa*b
Use property a* (ba*)*= (a+b)*
   = a(b+aa*b)*aa*b
   = RHS
Hence proved

Problem 2

Prove that b + ab* + aa*b + aa*ab* = a*(b + ab*).

Let’s take LHS,
   = b + ab* + aa*b + aa*ab*
   = (b+aa*b)+(ab*+aa*ab*)
   = (^+aa*)b+(^+aa*)ab* {using distributing property}
   = (a*)b+(a*)ab* from ^+aa*=a*
   = a*b+a*ab*
   = a*(b+ab*) {distributive property}
   = RHS
Hence proved
Updated on: 2021-06-16T13:33:17+05:30

1K+ Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements