Syntax error Return the Cholesky decomposition in Linear Algebra in Python

Return the Cholesky decomposition in Linear Algebra in Python



To return the Cholesky decomposition, use the numpy.linalg.cholesky() method. Return the Cholesky decomposition, L * L.H, of the square matrix a, where L is lower-triangular and .H is the conjugate transpose operator. The a must be Hermitian and positive-definite. No checking is performed to verify whether a is Hermitian or not. In addition, only the lower-triangular and diagonal elements of a are used. Only L is actually returned.

Then parameter a, is the Hermitian (symmetric if all elements are real), positive-definite input matrix. The method returns the Upper or lower-triangular Cholesky factor of a. Returns a matrix object if a is a matrix object.

Steps

At first, import the required libraries -

import numpy as np

Creating a 2D numpy array using the numpy.array() method −

arr = np.array([[1,-2j],[2j,5]])

Display the array −

print("Our Array...\n",arr)

Check the Dimensions −

print("\nDimensions of our Array...\n",arr.ndim)

Get the Datatype −

print("\nDatatype of our Array object...\n",arr.dtype)

Get the Shape −

print("\nShape of our Array object...\n",arr.shape)

To return the Cholesky decomposition, use the numpy.linalg.cholesky() method −

print("\nCholesky decomposition in Linear Algebra...\n",np.linalg.cholesky(arr))

Example

import numpy as np

# Creating a 2D numpy array using the numpy.array() method
arr = np.array([[1,-2j],[2j,5]])

# Display the array
print("Our Array...\n",arr)

# Check the Dimensions
print("\nDimensions of our Array...\n",arr.ndim)

# Get the Datatype
print("\nDatatype of our Array object...\n",arr.dtype)

# Get the Shape
print("\nShape of our Array object...\n",arr.shape)

# To return the Cholesky decomposition, use the numpy.linalg.cholesky() method.
print("\nCholesky decomposition in Linear Algebra...\n",np.linalg.cholesky(arr))

Output

Our Array...
[[ 1.+0.j -0.-2.j]
[ 0.+2.j 5.+0.j]]

Dimensions of our Array...
2

Datatype of our Array object...
complex128

Shape of our Array object...
(2, 2)

Cholesky decomposition in Linear Algebra...
[[1.+0.j 0.+0.j]
[0.+2.j 1.+0.j]]
Updated on: 2022-02-24T12:59:28+05:30

507 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements