Syntax error Solve the tensor equation in Python

Solve the tensor equation in Python



To solve the tensor equation, use the numpy.linalg.tensorsolve() method in Python. It is assumed that all indices of x are summed over in the product, together with the rightmost indices of a, as is done in, for example, tensordot(a, x, axes=b.ndim).

The 1st parameter, a is a coefficient tensor, of shape b.shape + Q. Q, a tuple, equals the shape of that sub-tensor of a consisting of the appropriate number of its rightmost indices, and must be such that prod(Q) == prod(b.shape). The 2nd parameter, b is a right-hand tensor, which can be of any shape. The 3rd parameter, axis is an axes in a to reorder to the right, before inversion. If None (default), no reordering is done.

Steps

At first, import the required libraries-

import numpy as np

Creating two numpy arrays using the array() method

arr1 = np.eye(2*3*4)
arr1.shape = (2*3, 4, 2, 3, 4)

arr2 = np.random.randn(2*3, 4)

Display the arrays −

print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

Check the Dimensions of both the arrays −

print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

Check the Shape of both the arrays −

print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

To solve the tensor equation, use the numpy.linalg.tensorsolve() method in Python. It is assumed that all indices of x are summed over in the product, together with the rightmost indices of a, as is done in, for example, tensordot(a, x, axes=b.ndim) −

print("\nResult...\n",np.linalg.tensorsolve(arr1, arr2))

Example

import numpy as np

# Creating two numpy arrays using the array() method
arr1 = np.eye(2*3*4)
arr1.shape = (2*3, 4, 2, 3, 4)
arr2 = np.random.randn(2*3, 4)

# Display the arrays
print("Array1...\n",arr1)
print("\nArray2...\n",arr2)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",arr1.ndim)
print("\nDimensions of Array2...\n",arr2.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",arr1.shape)
print("\nShape of Array2...\n",arr2.shape)

# To solve the tensor equation, use the numpy.linalg.tensorsolve() method in Python.
print("\nResult...\n",np.linalg.tensorsolve(arr1, arr2))

Output

Array1...
[[[[[1. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 1. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 1. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[1. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 1. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 1. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 1.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[1. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 1. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 1. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 1.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 1.]
[0. 0. 0. 0.]]]]



[[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[1. 0. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 1. 0. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 1. 0.]]]


[[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 1.]]]]]

Array2...
[[ 0.31376716 0.63443741 0.58628101 0.62313096]
[ 1.12528958 -1.18403238 -0.64663325 -0.24241201]
[ 0.55598965 -2.00059925 -1.97946414 -1.72478953]
[ 0.18976226 0.60572953 1.50157692 -2.4491463 ]
[ 0.42461806 -2.17872016 0.49677904 -1.11634625]
[-1.09074462 0.35475618 0.42474987 -1.34391368]]

Dimensions of Array1...
5

Dimensions of Array2...
2

Shape of Array1...
(6, 4, 2, 3, 4)

Shape of Array2...
(6, 4)

Result...
[[[ 0.31376716 0.63443741 0.58628101 0.62313096]
[ 1.12528958 -1.18403238 -0.64663325 -0.24241201]
[ 0.55598965 -2.00059925 -1.97946414 -1.72478953]]

[[ 0.18976226 0.60572953 1.50157692 -2.4491463 ]
[ 0.42461806 -2.17872016 0.49677904 -1.11634625]
[-1.09074462 0.35475618 0.42474987 -1.34391368]]]
Updated on: 2022-02-25T06:55:20+05:30

737 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements